CE 1210. Introduction to Smart Infrastructure.
This course is an overarching study of municipal and private infrastructure and the use of modern technology and techniques to monitor and manage these assets. Topics and case studies examine transportation, water resources, utilities, and other construction projects. General topics related to the civil engineering profession are also covered.
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 2340. Infrastructure Materials.
This course examines the composition, production, engineering properties, and in-place behavior of materials used to construct and repair infrastructure assets. Sensing devices used to monitor a material are discussed. Students will learn to follow standard test methods, perform data acquisition, conduct data analysis, and visualize test data. Prerequisite: CHEM 1335 and ENGR 3311 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 2350. Structural Analysis.
This course is an introduction to the loading, response, analysis, and monitoring of infrastructure assets. Determinate and indeterminate structures are studied. Analysis by classic and modern computational methods are covered. The analysis of data obtained from sensing devices in, on, or remote to an infrastructure asset is discussed. Prerequisite: CHEM 1335 and ENGR 3311 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 3330. Soil Mechanics.
This course examines the engineering characteristics of soil. Topics include identification, compaction, shear strength, consolidation, vertical stress, and deformation. Standard laboratory test methods are followed. Advanced data analysis, interpretation, and visualization techniques are presented. Prerequisite: ENGR 3311 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 3331. Infrastructure Foundations.
This course investigates foundation systems which support infrastructure assets. Shallow and deep foundations, piles, footings, mats, and retaining walls may be covered. Foundations are evaluated for consolidation, rate of settlement, stress distribution, elastic settlement, and bearing capacity. Life-cycle management of foundations will be examined. Prerequisite: CE 3330 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 3335. Design of Reinforced Concrete Infrastructure.
This course covers the analysis and design of reinforced concrete infrastructure assets. Topics include columns, beams, one-way slabs, and footings. Students will learn how to read, interpret, and use specifications and design codes. The use of technology to monitor the behavior of a reinforced concrete infrastructure asset will be introduced. Prerequisite: CE 2340 and CE 2350 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 3360. Transportation Planning and Infrastructure.
This course is an introduction to the planning and design of transportation infrastructure assets. Social, economic, safety, and engineering issues impacting transportation are examined. Interactions between users, vehicles, and the infrastructure will be addressed. The expanding use of technology to enhance transportation systems will be examined. Prerequisite: IE 3320 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4310. Infrastructure Sensor Technologies.
This course is an advanced study of the sensor technologies available to monitor the performance and behavior of infrastructure assets. Prerequisite: CE 3310 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

This course examines the issues and processes involved in the transmission of data between sensor devices and data storage centers. Topics include data communication principles, transmission signals, wireless and wired communication systems, security, and examples of best practices. Prerequisite: ENGR 3373 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
CE 4320. Biological Wastewater Management.
This course examines biological treatment processes for domestic and industrial wastewater. The use of sensor technologies to monitor the effectiveness of a treatment option is also addressed. Prerequisite: CE 3320 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4321. Hazardous Waste Management.
This course is a study of best management practices relative to hazardous waste. Topics include contamination processes, site investigations, detection, analysis methods, evaluation methods, and risk management, and treatment protocols. The use of technology to manage the life-cycle performance of contaminated hazardous wastes sites will be studied. Prerequisite: CE 3320 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4322. Air Pollution Management.
This course is an introductory study of air pollution. Topics include sources, quality, meteorological influences, atmospheric dispersion modeling, and control methods. The use of sensor technologies to monitor the effectiveness of an air pollution control option is also addressed. Prerequisite: CE 3320 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4330. Design of Retaining Structures.
This course examines the design of geotechnical structures, such as a retaining wall, that retain soil or another material. The use of technology to manage the life-cycle performance of retaining structures will be studied. Prerequisite: CE 3331 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4331. Design of Prestressed Concrete Infrastructure.
This course covers the analysis and design of prestressed concrete infrastructure assets. Topics include columns, beams, slabs, pipes, and piles. Students will learn how to read, interpret, and use specifications and design codes. The use of technology to monitor the behavior of a prestressed concrete infrastructure asset will be introduced. Prerequisite: CE 3350 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4332. Air Pollution Management.
This course is an introductory study of air pollution. Topics include sources, quality, meteorological influences, atmospheric dispersion modeling, and control methods. The use of sensor technologies to monitor the effectiveness of an air pollution control option is also addressed. Prerequisite: CE 3320 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4340. Hydrology.
This course is an examination of the properties, distribution, and circulation of water. Topics include pipe flow, pipe networks, pumps, and open channel flow. The use of sensors to monitor fluid flow, pressure, and leaks will be addressed. Advanced data analysis and visualization techniques will be presented. Prerequisite: ENGR 3380 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4341. Highway Engineering.
This course covers alignment, interchange, construction, and maintenance issues related to highways. Topics include cross-sections, horizontal and vertical alignment, sight distance, pavement design, drainage analysis, traffic engineering, highway capacity, and construction materials. The analysis of data obtained from sensing devices during construction or use of a highway is also discussed. Prerequisite: CE 3360 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4350. Design of Steel Infrastructure.
This course covers the analysis and design of steel infrastructure assets. Topics include connections, columns, beams, and beam-columns. Students will learn how to read, interpret, and use specifications and design codes. The use of technology to analyze the behavior of steel infrastructure assets will be introduced. Prerequisite: CE 2350 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4351. Design of Steel Infrastructure.
This course covers the analysis and design of steel infrastructure assets. Topics include connections, columns, beams, and beam-columns. Students will learn how to read, interpret, and use specifications and design codes. The use of technology to analyze the behavior of steel infrastructure assets will be introduced. Prerequisite: CE 2350 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4360. Intelligent Transportation Systems.
This course is a study of the components, technologies, and infrastructure assets that comprise intelligent transportation systems (ITS). Smart technologies, data acquisition, and communication sub-systems will be examined within the context of personal, commercial, and public transportation. Coverage will include mobility, public safety, socioeconomic and environmental factors impacting transportation systems. Prerequisite: CE 3310 and CE 3360 both with grades of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4361. Highway Engineering.
This course covers alignment, interchange, construction, and maintenance issues related to highways. Topics include cross-sections, horizontal and vertical alignment, sight distance, pavement design, drainage analysis, traffic engineering, highway capacity, and construction materials. The analysis of data obtained from sensing devices during construction or use of a highway is also discussed. Prerequisite: CE 3360 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4370. Hydraulics.
This course is an examination of the properties, distribution, and circulation of water. Topics include pipe flow, pipe networks, pumps, and open channel flow. The use of sensors to monitor fluid flow, pressure, and leaks will be addressed. Advanced data analysis and visualization techniques will be presented. Prerequisite: ENGR 3380 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

This course is an examination of surface and groundwater hydrology. Topics include the hydrologic cycle, groundwater flow, wells, storm water management practices, open channel flow, stream flow measurements, hydrologic routing, modeling, probability, and applications. The use of sensors to monitor hydrologic activity is also addressed. Prerequisite: CE 4370 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4372. Water and Wastewater Treatment.
This course is a study of the physical, chemical, and biological processes used to clean water and wastewater. The use of sensors to monitor treatment processes is also addressed. Prerequisite: CE 4370 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

CE 4390. Civil Engineering Design I.
This is the first in a two-course sequence meant to prepare students for engineering practice with a culminating major design experience. This course covers the planning, scheduling, budgeting, and management aspects of a technology-enhanced infrastructure design project. Prerequisite: CE 3310 and CE 3330 and CE 3350 and CE 3360 all with grades of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter
CE 4391. Civil Engineering Design II.
This is the second in a two-course sequence meant to prepare students for engineering practice with a culminating major design experience. This course focuses on the completion of all phases of the design project. Prerequisite: CE 3320 and CE 4390 both with grades of "C" or better. Corequisite: CE 3331 and CE 4370 and GEO 4356 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter

CE 4392. Sustainable Infrastructure.
This course examines the sustainability characteristics of various infrastructure assets. The assets and characteristics examined will be established by the course instructor. Examples include pervious pavements, sustainable construction materials, and sustainability in the design process. The use of technology to manage the life-cycle performance of an asset will be studied. Prerequisite: CE 3331, CE 3350, CE 3360, and CE 3380 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5320. Water Quality Management.
This course is an advanced study of the processes used to monitor, measure, and manage water quality for municipal, commercial, or industrial use. The use of technology to enhance water quality management processes is also investigated. Prerequisite: Instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5321. Transport and Fate of Contaminants.
This course is a study of the transport and fate of contaminants in surface water, sub-surface water, and the atmosphere. Use of technology to monitor the transport and fate of contaminants is also addressed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5340. Advanced Infrastructure Materials.
This course is an advanced study of materials used in the construction of infrastructure assets. Topics include high-performance materials, nanomaterials, and advanced material testing techniques. Use of technology to monitor in-situ performance of a material is also addressed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5350. Highway Bridge Design.
This course covers the design of highway bridge structures, including both the super- and sub-structure. Design is in accordance with current Federal Highway Administration (FHWA) specifications. Prerequisite: Instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5360. Pavement Design.
This course covers the design of concrete, asphalt, and pervious pavements. Included are highway pavements, urban streets, airport pavements, industrial pavements, and roller compacted concrete. Design is in accordance with current FHWA specifications. Common construction methods are also addressed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5370. Urban Stormwater Management.
This course examines the planning, design, operation, and maintenance of urban stormwater management systems. Political, social, economic, and environmental influences on such systems are examined. The impact of extreme events on stormwater systems and the urban landscape are also considered. Prerequisite: Instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5372. Open Channel Flow.
This course is an advanced study of uniform, gradually varying, and rapid varying water flow in both natural and engineered open channels. The use of technology to monitor and maintain open channel structures is also addressed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CE 5390. Infrastructure Systems Analysis.
This course is an advanced study of the planning, operation, and maintenance of municipal and commercial infrastructure assets. Political, social, economic, environmental, and engineering influences on infrastructure systems are addressed. Use of technology to enhance the safety and economic value of the infrastructure is also investigated. Prerequisite: Instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

This course is an advanced study of stress, strain, and deformation in elastic bodies. Topics covered include torsion, unsymmetrical bending, nonlinear beams, stress concentrations, beams on elastic foundations, Mohr's circle, and an introduction to the theory of elasticity.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter