ME 1101. Introduction to Digital Mechanical Engineering Lab.
This lab course introduces students to engineering labs and digital equipment. Topics include instruction in design labs, a brief introduction to computer-aided design (CAD), and digital additive manufacturing and making. Corequisite: ENGR 1304 and ME 1201 both with grades of "C" or better.
1 Credit Hour. 0 Lecture Contact Hours. 3 Lab Contact Hours.
Grade Mode: Standard Letter

ME 1201. Introduction to Digital Mechanical Engineering.
This course introduces students to mechanical engineering as a discipline and a profession. Topics include instruction in the engineering design process, use of digital sensors, AI, the Internet of Things and the security of sensors in mechanical systems, engineering simulation and application of mathematical and scientific principles to solve practical problems, ethics, and career opportunities.
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 3151. Smart Instrumentation and Measurement Lab.
In this lab course, students conduct Internet of Things concept experiments for mechanical measurements using digital instrumentation and transducers via wireless digital communication and computer-based data acquisition tools. Lab experiments cover fundamental experimental techniques, operational principles of various digital instruments and transducers, and statistical data analysis techniques. Prerequisite: ENGR 3373 with a grade of "C" or better. Corequisite: ME 3351 with a grade of "C" or better.
1 Credit Hour. 0 Lecture Contact Hours. 3 Lab Contact Hours.
Grade Mode: Standard Letter

In this lab course, students get hands-on experience in reading CAD drawing standards, lab safety, machine tools operation, welding, as well as operation of digital manufacturing processes including 2D and 3D CNC machining, additive manufacturing, laser cutting, plastics and composites manufacturing, and waterjet cutting. Prerequisite: ME 1101 or MFGE 2332 either with a grade of "C" or better. Corequisite: ME 3361 or MFGE 3316 either with a grade of "C" or better.
3 Credit Hours. 0 Lecture Contact Hours. 3 Lab Contact Hours.
Grade Mode: Standard Letter

ME 3310. Engineering Thermodynamics.
This course covers introductory concepts of thermodynamics, energy transfer and general energy analysis, properties of pure substances, ideal gas model, mass and energy analysis of control volumes, first and second laws of thermodynamics, entropy, power cycles, and refrigeration cycles. Prerequisite: CHEM 1135 and CHEM 1335 and MATH 2472 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 3331. Heat Transfer.
This course covers introductory concepts of heat transfer, steady-state and transient conduction in one- and two-dimensions, external forced convection, internal forced convection, natural convection, heat exchangers, and fundamentals of radiation. Prerequisite: ME 3335 and MATH 3323 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

This course covers introduction to fluid mechanics, fluid properties, fluid statics, fluid dynamics, control volume analysis, differential analysis of fluid flow, dimensional analysis, viscous flow in pipes, external flows, and open channel flows. Prerequisite: ENGR 2302 and MATH 2393 and ME 3330 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 3351. Smart Instrumentation and Measurement.
This course covers basic concepts and principles of instrumentation and measurement systems, analog and digital devices, basic electronics, sensors and transducers, introduction to the Internet of Things (IoT) and big data, cybersecurity of IoT devices, wireless digital network and communication, probability and statistics to characterize measurement uncertainty, data acquisition and analysis using software packages, and measurements of physical properties such as temperature, pressure, and strain. Prerequisite: ENGR 3373 with a grade of "C" or better. Corequisite: ME 3151 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 3361. Computer Aided Design And Digital Manufacturing.
This course provides an in-depth study of Computer Aided Design (CAD) and Digital Manufacturing. Topics include design process, mathematical and graphical demonstration of wireframe/surface/solid models, transformation and manipulation of objects, CAD file formats and data exchange, process planning, cutting tools types and materials, milling process, fundamental of CNC machines, numerical control programming for milling processes, CNC code generation and simulation by CAD/CAM software, and an overview of other digital manufacturing processes such as additive manufacturing, laser cutting and welding, and waterjet cutting. Prerequisite: ENGR 1304 and ENGR 2300 and ME 1101 all with grades of "C" or better. Corequisite: MATH 2471 and ME 3161 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter
ME 4131. Fluids/Thermal Lab.
This laboratory course is designed for students to conduct experiments based on various principles of fluid mechanics, thermodynamics, and heat transfer. Students need to use proper experimental methods and interpret data using these principles and uncertainty analysis.
Prerequisite: ME 3151 and ME 3331 and ME 3351 all with grades of "C" or better. Corequisite: ME 4390 with a grade of "C" or better.
1 Credit Hour. 0 Lecture Contact Hours. 3 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4311. Mechanical Vibrations.
This course introduces fundamental concepts on the vibration of mechanical systems. Topics include equations of motion, free and forced vibrations of damped/undamped single- and multi-degree-of-freedom mechanical systems, self-excitation and stability analysis, application of transfer functions for vibration problems, Lagrange's equations, and determination of natural frequencies and mode shapes of multi-degree-of-freedom systems.
Prerequisite: ENGR 2302 and MATH 3376 and MATH 3323 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

This course focuses on the elastic properties of a wide range of composites including unidirectional and multidirectional laminates, particulate/fiber-reinforced composites; invariant properties of an orthotropic lamina; classical lamination theory; strength of laminates; and use of general purpose computer codes for classical laminate theory.
Prerequisite: MATH 3376 and ME 3311 and MFGE 4355 all with a "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4332. Modern Heating, Ventilating, and Air Conditioning.
This course focuses on current and upcoming practices in heating, ventilating, and air conditioning (HVAC), including psychrometrics, standards, ventilation requirements, load estimates, filtration, air sterilization, and building energy system design, simulation, and control.
Prerequisite: ME 3331 with a grade of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4341. Computational Fluid Dynamics.
This course introduces the scientific principles and practical engineering applications of Computational Fluid Dynamics (CFD). Although it provides a brief overview of the fundamental mathematics governing fluid flow and heat transfer phenomena, its emphasis is to apply the knowledge using commercial CFD software. Topics include set-up of appropriate CFD parameters, conduct of steady-state and transient fluid flow simulations, solutions for both isothermal and non-isothermal thermo-fluid applications, solutions for both incompressible and compressible fluid flow applications, solutions for fluid flow through porous media and rotating machinery, and extraction of the required results including plots.
Prerequisite: MATH 3323 and MATH 3376 and ME 3335 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4351. Control Systems.
This course covers introductory concepts of linear control systems. Topics include mathematical modeling of physical systems, Laplace transform, transfer function, modeling and analysis in state space, transient and steady state responses, root locus and stability, control systems in time and frequency domains, Bode plot, and design of PID controllers.
Prerequisite: ENGR 2302 and MATH 3323 both with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4355. Autonomous Systems and Robotics.
This course introduces different types of autonomous systems, such as autonomous driving vehicles, drones, and robots, and provides an introduction to the methods and algorithms used in design, construction, and operation of such systems. The emphasis is on the application of autonomous systems, their components, and their underlying control algorithms, including sensor fusion, real-time decision making and learning, information processing, path planning, localization, and intelligent control.
Prerequisite: ENGR 2302 and IE 3320 and MATH 3376 and ME 4351 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

ME 4390. Mechanical Engineering Design I.
This course is the first of a two course sequence involving integrated design and development of products and processes; impact of ethical issues on design; the discussion of real-world engineering problems and emerging engineering issues with practicing engineers; preparation of reports indicating use of appropriate engineering standards and multiple constraints, plans and specifications; cost estimation; project management; and communication.
Prerequisite: ME 3331 and MFGE 4355 both with grades of "C" or better. Corequisite: ME 4131 with a grade of "C" or better.
3 Credit Hours. 2 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter

ME 4391. Mechanical Engineering Design II.
This course is the second of a two course sequence involving implementation of Integrated design and development of products and processes; impact of ethical issues; the discussion of real-world engineering problems and emerging engineering issues with practicing engineers; preparation of reports indicating use of appropriate engineering standards and multiple constraints, plans and specifications; cost estimation; project management; and communication.
Prerequisite: ME 4131 and ME 4390 both with grades of "C" or better.
3 Credit Hours. 2 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter