The Department of Chemistry and Biochemistry is committed to excellence in educating our students and conducting high-impact research. The department offers both M.A. and M.S. degree programs. The M.S. degrees are research-based and require a thesis while the M.A. degree is course-based and requires successful completion of a cumulative examination. The curriculum provides opportunities for research and learning in all areas of chemistry and biochemistry and encourages a hands-on approach to the use of a wide variety of modern instrumentation. Many of our graduates have advanced to industrial positions and/or professional and doctoral programs, including the doctoral program in materials science, engineering, and commercialization (MSEC) at Texas State.

Research Areas

The department’s graduate faculty conducts research in numerous areas of the five fields of chemistry. Specific research areas include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>mass spectrometry, chromatography, electrochemistry, spectral methods</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>enzyme isolation, enzyme mechanisms, ion-channel regulation, protein structure-function relationships, molecular genetics; gene delivery; nucleic acid biochemistry; ribonucleoprotein complex function and regulation; genomics; proteomics</td>
</tr>
<tr>
<td>Inorganic</td>
<td>synthesis and structure of high conductivity solid-state electrolyte compounds, boron-nitrogen compounds, bioinorganic chemistry; solid state synthesis; metal complex catalysis; intercalation chemistry; crystallography; synthetic main group organometallic chemistry</td>
</tr>
<tr>
<td>Organic</td>
<td>Synthetic organometallic chemistry; synthesis of stable carbenes and applications in small molecule activation and catalysis; chemistry of “frustrated” Lewis pairs; heterocyclic chemistry</td>
</tr>
<tr>
<td>Physical</td>
<td>molecular beam methods and laser spectroscopy; polymer synthesis; nanocomposites; thin organic films, structure-property relationships; electronic polymers</td>
</tr>
</tbody>
</table>

Research Facilities

Research instruments available include 400 and 500 MHz NMR, X-ray Diffractometer, UV and IR spectrophotometers, atomic absorption, liquid and gas chromatographs, electrospray ionization/mass spectrometer, high-speed centrifuges, TGA, DSC, DMA, particle size analyzer, GPC, epi-fluorescent microscope, CO₂ incubators, and multi-well plate readers.

Financial Assistance

Graduate students are encouraged to work as graduate instructional assistants. Applications can be obtained from the Department of Chemistry and Biochemistry website. A limited number of research assistantships are also available based on available funding from individual research advisors. The Graduate College can provide information about the availability of graduate scholarships. In order to be considered for assistantships or scholarships, applicants must have submitted a completed application for review by the priority application deadline.

Master of Arts (M.A.)

- Major in Chemistry (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/chemistry-ma)

Master of Science (M.S.)

- Major in Biochemistry (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/biochemistry-ms)
- Major in Chemistry (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/chemistry-ms)

Bachelor of Science (B.S.) and Master of Science (M.S.)

- Major in Biochemistry (Early-Entry Program) (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/chemistry-earlyentry-bs-ms)
- Major in Chemistry (Early-Entry Program) (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/chemistry-earlyentry-bs-ms)

Minors

- Biochemistry (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/biochemistry-minor)
- Chemistry (http://mycatalog.txstate.edu/graduate/science-engineering/chemistry-biochemistry/chemistry-minor)