MASTER OF SCIENCE (M.S.) MAJOR IN CONSTRUCTION MANAGEMENT (NON-THESIS OPTION)

Program Overview
The master's degree is increasingly becoming the degree of choice among Construction Managers as the field becomes more technologically advanced and the industry more complex with governmental regulations. The purpose of the Construction Management master’s degree program is to provide advanced project management principles and practices, critical thinking and creativity, and complex problem solving and decision making in construction projects as a specialized program for working construction professionals and others seeking master’s level preparation. Further, the program will provide students with the skills to integrate information and communication technology in Construction Management.

Application Requirements
The items listed below are required for admission consideration for applicable semesters of entry during the current academic year. Submission instructions, additional details, and changes to admission requirements for semesters other than the current academic year can be found on The Graduate College's website (http://www.gradcollege.txstate.edu). International students should review the International Admission Documents webpage (http://mycatalog.txstate.edu/graduate/admission-documents/international/) for additional requirements.

- completed online application
- $55 nonrefundable application fee
 or
- $90 nonrefundable international evaluation fee (if applicable)
- baccalaureate degree (or equivalent) from an accredited college or university in construction related area. Graduates of curricula outside these program areas may be required to satisfy program prerequisite before full admission into the program
- official transcripts from each institution where course credit was granted
- a competitive GPA in the last 60 hours of undergraduate course work (plus any completed graduate courses)
- knowledge of Construction Management demonstrated through previous coursework and/or work experience
- responses to specific essay questions on the statement of purpose
- resume/CV detailing work experience, extracurricular and community activities, and honors and achievements
- two letters of recommendation from persons best able to assess the student’s ability to succeed in graduate school

Applicants should refer to The Graduate College website for additional information regarding the admission process.

TOEFL or IELTS Scores

Non-native English speakers who do not qualify for an English proficiency waiver:
- official TOEFL iBT scores required with an 78 overall
- Official IELTS (academic) scores required with a 6.5 overall and

Minimum individual module scores of 6.0

This program does not offer admission if the scores above are not met.

Degree Requirements
The Master of Science (M.S.) degree with a major in Construction Management requires 30 semester credit hours.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSM 5314</td>
<td>Technology Management in Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5360</td>
<td>Construction Company Financial Control</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5362</td>
<td>Pre-Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5363</td>
<td>Construction Project Delivery and Leadership</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5364</td>
<td>Decision Making in Construction Management</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5366</td>
<td>Soils in Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5368</td>
<td>Sustainable Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5369</td>
<td>Construction Dispute Resolution</td>
<td>3</td>
</tr>
<tr>
<td>CSM 5380</td>
<td>Construction Safety Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Prescribed Electives
Choose 3 hours from the following:
- CSM 5365 Construction Project Controls
- CSM 5367 Principles of Leadership in Construction
- CSM 5384A Construction Failure

Total Hours 30

Comprehensive Examination
All candidates for graduate degrees must pass one or more comprehensive examinations, either written, oral, or both, covering at least the field of concentration.

Master’s level courses in Engineering Technology: CSM, TECH

Courses Offered
Construction Science and Management (CSM)

CSM 5199B. Thesis.
This course represents a student’s continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.

3 Credit Hours. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit
CSM 5299B. Thesis.
This course represents a student’s continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

This course introduces students to the legal aspects of design and construction contract documents, including dispute resolution methods and professional ethics commonly used in the construction industry. This course does not earn graduate degree credit.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Leveling/Assistantships

This course provides the student with a comprehensive introduction to the principles, techniques, technologies, and basic concepts involving methodologies and strategies used in the preparation of various types of construction estimates and bids. This course does not count as degree credit.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Leveling/Assistantships

This course is a commercial building construction systems class dealing with soils, site work, heavy foundations, steel, reinforced concrete, precast structures and common assemblies. Commercial MEPs are studied along with CSI master format, as-built/shop drawings, schedule of values, AIA documents, and appropriate building codes. This course does not earn graduate degree credit.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Leveling/Assistantships

CSM 5313. Building Information Modeling.
This course covers understanding the supervisory role of construction professionals in the design process including, directing a design team in the integration of construction documents for commercial buildings, coordination of site work, structural, architectural, mechanical, electrical, plumbing plans and contemporary CAD software for 2D & 3D design including Building Information Modeling. Prerequisite: CSM 2313 with a grade of ‘D’ or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5314. Technology Management in Construction.
This course covers the supervisory role of construction professionals in the Virtual Design and Construction (VDC) process. Topics covered include directing a VDC team in the integration of construction documents for construction (architectural, structural, mechanical, electrical, and plumbing plans), coordination of site work, implementation of current CAD software for 2D and 3D design, the Building Information Modeling (BIM) process, and other technologies that have an impact on the construction industry.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5360. Construction Company Financial Control.
Financial accounting and cost controls used at the company level in construction companies are studied. Topics include accounting systems, construction project profit calculations, and financial analysis. Prerequisites: CSM 5302 and CSM 5304 and CSM 5306 all with grades of ‘C’ or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

The course will introduce students to designer/contractor interactions, including conceptual estimating and scheduling, the RFO/RFP process and legal, insurance, risk allocation issues, along with procurement and selection. Prerequisites: CSM 5302 and CSM 5304 and CSM 5306 all with grades of ’C’ or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5363. Construction Project Delivery and Leadership.
This course covers methods of construction project delivery in detail and focuses on analyzing data to assess its impact on project outcomes. Construction project delivery is covered along with contract strategies. An owner approach to a method selection is developed within this class.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5364. Decision Making in Construction Management.
This course focuses on the application of systems engineering and statistics used in solving construction and civil engineering problems. Topics covered include network and linear programming models, construction and evaluation of decision trees to clarify a proper course of action considering uncertainty, probability distributions, sample statistics, linear regression models, risk analysis, and sampling plans for quality assurance. Personal computer usage emphasized for problem solving.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5365. Construction Project Controls.
This course covers construction management cost and schedule concepts, cost/schedule management information systems, variance analysis, forecasting, resource management, project recovery strategies, and application of theory to practical problems.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5366. Soils in Construction.
This course provides students with an in-depth examination of geotechnical principles as they apply to soil construction activities. Topics covered include geological formations of natural soils, soil mineralogy, soil sampling, classification, soil testing, dewatering, safety and sustainability in soil construction, soil contamination and remediation, recycled content used in soil construction and innovative technologies in soil stabilization.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
This course covers individual, organizational, and process/structure styles of leadership using a transformational model.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5368. Sustainable Construction.
This course examines a breadth of sustainable construction techniques, including material production, material selection, sustainable design, the ecology model for design, life cycle cost analysis, and sustainable construction. The sustainable construction techniques are discussed relative to advanced sustainable framing, waste minimization techniques, LEED, and green roofs.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5369. Construction Dispute Resolution.
This course focuses on different mechanisms of dispute resolution in the industry. They are presented from the perspective of owner, designer, and contractor's liability/risk assessment. The course is comprised of best practices and pitfalls of negotiation, mediation and arbitration. Finally, a perspective on litigation is discussed, along with the fast changing world of case law. The course uses a collaborative model of contemporary research and industry case studies.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5380. Construction Safety Management.
This course covers the administration and application of 29CFR 1926 OSHA Construction Industry Regulations for the construction industry along with applicable state and federal construction safety laws related to construction, alterations, or repair work at construction sites. The roles of all participants at the construction job site concerning construction safety are discussed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5384A. Construction Failure.
This course covers a breadth of causes of construction failure, including how past failures can improve current construction practices and litigation is a likely response to failures in construction.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing|Topics
Grade Mode: Standard Letter

CSM 5399A. Thesis.
This course represents a student's initial thesis enrollment. No thesis credit is awarded until student has completed the thesis in Construction Management.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

CSM 5399B. Thesis.
This course represents a student's continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

CSM 5599B. Thesis.
This course represents a student's continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

Technology (TECH)

TECH 5100. Academic Instruction for Technology.
The course is seminar based and covers topics related to teaching and employment responsibilities. Completion of this course is required as a condition of employment for graduate assistants. This course does not earn graduate degree credit. Repeatable with different emphasis.
1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Course Attribute(s): Graduate Assistantship|Exclude from Graduate GPA
Grade Mode: Leveling/Assistantships

TECH 5195. Industrial Internship.
This course is a supervised experiential learning course in Technology Management. This work integrated learning course helps the student link theory with practice. Repeatable for credit. Prerequisites: Instructor approval.
1 Credit Hour. 0 Lecture Contact Hours. 4 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

TECH 5199B. Thesis.
This course represents a student's continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.
1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5299B. Thesis.
This course represents a student's continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5310. Product Design and Development.
This course provides an overview of the new product realization process. The focus is on the steps of systematic product design including problem identification, product planning, conceptual design, and embodiment design. Standard CAD tools are employed for product modeling. Prerequisite: TECH 2310 with a grade of 'C' or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
Application of computer hardware and software to the design of products and systems; geometric modeling; engineering computational methods; overview of engineering analysis software which may include finite element analysis, manufacturing simulation, solidification modeling, and rapid prototyping.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

TECH 5315. Engineering Economic Analysis.
This course deals with economic analytical techniques used in engineering decision making. Topics include time value of money, comparing alternatives, depreciation, replacement, and income tax considerations. Prerequisite: MATH 1315 or MATH 1319 either with a grade of 'C' or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

Provides the student with in-depth knowledge of inferential statistics as applied to design of robust processes and products. Topics covered include probability distributions, ANOVA, fractional factorial design, response surface method, orthogonal arrays, and Taguchi method. Prior experience with introductory-level statistics is assumed. Prerequisite: TECH 5394 with a grade of 'C' or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5365. Industrial Project Management and Scheduling.
Introduce students to industrial management system concepts and applications as they relate to management operations; system design, implementation and management; case studies of practices; and application of theory to practical problems.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5387. Advanced Facilities Planning.
An in-depth study of technical problems encountered in designing, equipping, arranging, and specifying facility requirements for industrial and technical training facilities.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5388. Readings in Technology.
A study of the ethical and moral viewpoints typically associated with American society as related to the development and introduction of new technology and engineering. Past, present, and future issues will be studied with selected readings focusing on industrial related problems and issues.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5389. Research in Technology.
Examination of scientific methods including theory formulation, deductive reasoning, hypothesis generation, observation, inductive reasoning, and theory revision. Categories of research are compared and contrasted as regards methodology. In-depth study of experimental research as it relates to significant industrial problems including considerations of design, internal and external validity, and appropriate analytical technique. Introduction to data analysis and its proper interpretation.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5390. Advanced Manufacturing Systems.
This course introduces students to various advanced tools, technologies, and strategies in modern manufacturing. An emphasis is placed on the state-of-the-art in factory automation and global and smart manufacturing enterprises. Topics include process automation and control, advanced manufacturing processes, intelligent manufacturing control, and information and communication technology (ICT) in manufacturing. Prerequisites: TECH 5307 with a grade of 'C' or better or instructor approval.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

An introduction to integrated circuit fabrication to include crystal growth, wafer preparation, epitaxial growth, oxidation, diffusion, ion implantation, thin film deposition, lithography, etching, device and circuit formation, packaging and testing. Significant project includes circuit design/simulation and/or process design. Laboratory component involves actual production/testing of a functional semiconductor device.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5392. Industrial Ecology and Sustainability Engineering.
This course covers the basic principles of life cycle analysis (LCA) of engineered products and processes. Topics covered include: industrial ecology, resource depletion, product design, process design, material selection, energy efficiency, product delivery, use, and end of life considerations.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5393. Problems in Technology.
Graduate students investigate a special topic by developing a technical problem, researching the topic, and presenting the findings. Plans will be developed on an individual basis with strict faculty supervision. May be repeated for additional credit with permission of the department chair.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5394. Design of Industrial Experiments.
This course deals with the study of the fundamentals and applications of industrial experiments. Prerequisite: TECH 5390 with a grade of 'C' or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
TECH 5398. Directed Project.
This course is a formal investigation into a business or industry problem. The directed project is an applied research project that is more extensive than an independent study and less extensive than a thesis. The course culminates in a detailed project report and oral presentation. Prerequisite: TECH 5394 with a grade of 'C' or better and instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

TECH 5399A. Thesis.
This course represents a student's initial thesis enrollment. No thesis credit is awarded until student has completed the thesis in Technology 5399B.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5399B. Thesis.
This course represents a student's continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5599B. Thesis.
This course represents a student's continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.
5 Credit Hours. 5 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5999B. Thesis.
This course represents a student's continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.
9 Credit Hours. 9 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit