MASTER OF SCIENCE (M.S.) MAJOR IN ENGINEERING MANAGEMENT (INDUSTRIAL MANAGEMENT CONCENTRATION NON-THESIS OPTION)

Program Overview
The Master of Science (M.S.) degree with a major in Engineering Management at Texas State is designed for those who seek careers or career advancement in the management of engineering and production activity in the construction and concrete industries; in the semiconductor, cast metals, machining, fabrication, and other manufacturing industries; or in the fields of power generation, environmental management, and occupational health and safety.

Application Requirements
The items listed below are required for admission consideration for applicable semesters of entry during the current academic year. Submission instructions, additional details, and changes to admission requirements for semesters other than the current academic year can be found on The Graduate College's website (http://www.gradcollege.txstate.edu). International students should review the International Admission Documents webpage (http://mycatalog.txstate.edu/graduate/admission-documents/international/) for additional requirements.

- completed online application
- $55 nonrefundable application fee
- or
- $90 nonrefundable application fee for applications with international credentials
- baccalaureate degree from a regionally accredited university. Background course work may be required if the undergraduate degree is not in the following fields: industrial technology, technology management, construction science and management, concrete industry management, engineering technology, or engineering.
- official transcripts from each institution where course credit was granted
- minimum 2.75 GPA in the last 60 hours of undergraduate course work (plus any completed graduate courses)*
- GRE not required*
- brief statement of purpose to include an explanation of why the applicant is interested in Technology Management as a field of study
- current resume/CV

TOEFL or IELTS Scores
Non-native English speakers who do not qualify for an English proficiency waiver:

- official TOEFL iBT scores required with a 78 overall
- official IELTS (academic) scores required with a 6.5 overall and
 - minimum individual module scores of 6.0

This program does not offer admission if the scores above are not met.

*Additional Information
If the GPA falls below the minimum requirement of 2.75, the student may submit the following to be considered for conditional admission:

- official GRE scores (general test only) with competitive scores in the verbal reasoning and quantitative reasoning sections

Degree Requirements
The Master of Science (M.S.) degree with a major in Engineering Management concentration in Industrial Management requires 36 semester credit hours. Students who do not have the appropriate background course work may be required to complete leveling courses.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 5315</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>TECH 5365</td>
<td>Industrial Project Management and Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>TECH 5382</td>
<td>Sustainability in Industrial Management</td>
<td>3</td>
</tr>
<tr>
<td>TECH 5390</td>
<td>Research in Technology</td>
<td>3</td>
</tr>
<tr>
<td>TECH 5394</td>
<td>Design of Industrial Experiments</td>
<td>3</td>
</tr>
<tr>
<td>TECH 5398</td>
<td>Directed Project (Taken twice)</td>
<td>6</td>
</tr>
</tbody>
</table>

| Concentration |

Choose 9 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 5310</td>
<td>Product Design and Development</td>
</tr>
<tr>
<td>TECH 5364</td>
<td>Robust Product and Process Design</td>
</tr>
<tr>
<td>TECH 5384</td>
<td>Problems in Technology</td>
</tr>
<tr>
<td>TECH 5385</td>
<td>Readings in Technology</td>
</tr>
<tr>
<td>TECH 5387</td>
<td>Planning Advanced Technology Facilities</td>
</tr>
</tbody>
</table>

May choose other advisor-approved courses in the College of Science and Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 5310</td>
<td>Organizational Change Management</td>
</tr>
<tr>
<td>MGT 5311</td>
<td>Process Improvement Management in Organizations</td>
</tr>
<tr>
<td>MGT 5315</td>
<td>New Venture Management</td>
</tr>
<tr>
<td>MGT 5321</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>MGT 5325</td>
<td>Managing Business Creativity</td>
</tr>
<tr>
<td>MGT 5391</td>
<td>Managing the Communication Process</td>
</tr>
</tbody>
</table>

May choose other advisor-approved business courses

Total Hours 36

Comprehensive Examination Requirement
The comprehensive examination takes the form of an oral exam given to the students during their oral proposal defense session. The comprehensive exam includes questions pertaining to the general theories and methodologies related to the area of research. Students who perform unacceptably on the exam may take the exam a second time.
Students who do not successfully complete the requirements for the degree within the timelines specified will be dismissed from the program.

Master’s level courses in Engineering Technology: CSM (p. 2), TECH (p. 3)

Courses Offered

Construction Science and Management (CSM)

CSM 5199B. Thesis.
This course represents a student’s continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

CSM 5299B. Thesis.
This course represents a student’s continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

This course introduces students to the legal aspects of design and construction contract documents, including dispute resolution methods and professional ethics commonly used in the construction industry. This course does not earn graduate degree credit.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Credit/No Credit

This course provides the student with a comprehensive introduction to the principles, techniques, technologies, and basic concepts involving methodologies and strategies used in the preparation of various types of construction estimates and bids. This course does not count as degree credit.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Leveling/Assistantships

This course is a commercial building construction systems class dealing with soils, site work, heavy foundations, steel, reinforced concrete, precast structures and common assemblies. Commercial MEPs are studied along with CSI master format, as-built/shop drawings, schedule of values, AIA documents, and appropriate building codes. This course does not earn graduate degree credit.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Exclude from Graduate GPA|Leveling
Grade Mode: Leveling/Assistantships

CSM 5313. Building Information Modeling.
This course covers understanding the supervisory role of construction professionals in the design process including, directing a design team in the integration of construction documents for commercial buildings, coordination of site work, structural, architectural, mechanical, electrical, plumbing plans and contemporary CAD software for 2D & 3D design including Building Information Modeling. Prerequisite: CSM 2313 with a grade of "D" or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5314. Technology Management in Construction.
This course covers the supervisory role of construction professionals in the Virtual Design and Construction (VDC) process. Topics covered include directing a VDC team in the integration of construction documents for construction (architectural, structural, mechanical, electrical, and plumbing plans), coordination of site work, implementation of current CAD software for 2D and 3D design, the Building Information Modeling (BIM) process, and other technologies that have an impact on the construction industry.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5360. Construction Company Financial Control.
Financial accounting and cost controls used at the company level in construction companies are studied. Topics include accounting systems, construction project profit calculations, and financial analysis. Prerequisites: CSM 5302 and CSM 5304 and CSM 5306 all with grades of "C" or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

The course will introduce students to designer/contractor interactions, including conceptual estimating and scheduling, the RFQ/RFP process and legal, insurance, risk allocation issues, along with procurement and selection. Prerequisites: CSM 5302 and CSM 5304 and CSM 5306 all with grades of "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5363. Construction Project Delivery and Leadership.
This course covers methods of construction project delivery in detail and focuses on analyzing data to assess its impact on project outcomes. Construction project delivery is covered along with contract strategies. An owner approach to a method selection is developed within this class.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5364. Decision Making in Construction Management.
This course focuses on the application of systems engineering and statistics used in solving construction and civil engineering problems. Topics covered include network and linear programming models, construction and evaluation of decision trees to clarify a proper course of action considering uncertainty, probability distributions, sample statistics, linear regression models, risk analysis, and sampling plans for quality assurance. Personal computer usage emphasized for problem solving.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
CSM 5365. Construction Project Controls.
This course covers construction management cost and schedule concepts, cost/schedule management information systems, variance analysis, forecasting, resource management, project recovery strategies, and application of theory to practical problems.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5366. Soils in Construction.
This course provides students with an in-depth examination of geotechnical principles as they apply to soil construction activities. Topics covered include geological formations of natural soils, soil mineralogy, soil sampling, classification, soil testing, dewatering, safety and sustainability in soil construction, soil contamination and remediation, recycled content used in soil construction and innovative technologies in soil stabilization.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

This course covers individual, organizational, and process/structure styles of leadership using a transformational model.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5368. Sustainable Construction.
This course examines a breadth of sustainable construction techniques, including material production, material selection, sustainable design, the ecology model for design, life cycle cost analysis, and sustainable construction. The sustainable construction techniques are discussed relative to advanced sustainable framing, waste minimization techniques, LEED, and green roofs.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5369. Construction Dispute Resolution.
This course focuses on different mechanisms of dispute resolution in the industry. They are presented from the perspective of owner, designer, and contractor's liability/risk assessment. The course is comprised of best practices and pitfalls of negotiation, mediation and arbitration. Finally, a perspective on litigation is discussed, along with the fast changing world of case law. The course uses a collaborative model of contemporary research and industry case studies.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5380. Construction Safety Management.
This course covers the administration and application of 29CFR 1926 OSHA Construction Industry Regulations for the construction industry along with applicable state and federal construction safety laws related to construction, alterations, or repair work at construction sites. The roles of all participants at the construction job site concerning construction safety are discussed.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 5384A. Construction Failure.
This course covers a breadth of causes of construction failure, including how past failures can improve current construction practices and litigation is a likely response to failures in construction.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing|Topics
Grade Mode: Standard Letter

CSM 5399A. Thesis.
This course represents a student's initial thesis enrollment. No thesis credit is awarded until student has completed the thesis in Construction Management.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

CSM 5399B. Thesis.
This course represents a student's continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

CSM 5599B. Thesis.
This course represents a student's continuing thesis enrollment. The student continues to enroll in this course until the thesis is submitted for binding.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

Technology (TECH)

TECH 5100. Academic Instruction for Technology.
The course is seminar based and covers topics related to teaching and employment responsibilities. Completion of this course is required as a condition of employment for graduate assistants. This course does not earn graduate degree credit. Repeatable with different emphasis.
1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Course Attribute(s): Graduate Assistantship|Exclude from Graduate GPA
Grade Mode: Leveling/Assistantships

TECH 5195. Industrial Internship.
This course is a supervised experiential learning course in Technology Management. This work integrated learning course helps the student link theory with practice. Repeatable for credit. Prerequisites: Instructor approval.
1 Credit Hour. 0 Lecture Contact Hours. 4 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit
TECH 5199B. Thesis.
This course represents a student's continuing thesis enrollments. The
student continues to enroll in this course until the thesis is submitted for
1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5299B. Thesis.
This course represents a student's continuing thesis enrollments. The
student continues to enroll in this course until the thesis is submitted for
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5310. Product Design and Development.
This course provides an overview of the new product realization process.
The focus is on the steps of systematic product design including problem
identification, product planning, conceptual design, and embodiment
design. Standard CAD tools are employed for product modeling.
Prerequisite: TECH 2310 with a grade of "C" or better or instructor
approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

Application of computer hardware and software to the design of products
and systems; geometric modeling; engineering computational methods;
overview of engineering analysis software which may include finite
element analysis, manufacturing simulation, solidification modeling, and
rapid prototyping.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

TECH 5315. Engineering Economic Analysis.
This course deals with economic analytical techniques used in
economic decision making. Topics include time value of money,
comparing alternatives, depreciation, replacement, and income tax
considerations. Prerequisite: MATH 1315 or MATH 1319 either with a
grade of "C" or better or instructor approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5345. Advanced Facilities Planning.
This course is an in-depth study of technical problems encountered in designing,
equipping, arranging, and specifying facility requirements for industrial
and technical training facilities.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

Provides the student with in-depth knowledge of inferential statistics
as applied to design of robust processes and products. Topics covered
include probability distributions, ANOVA, fractional factorial design,
response surface method, orthogonal arrays, and Taguchi method. Prior
experience with introductory-level statistics is assumed. Prerequisite:
TECH 5394 with a grade "C" or better.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5365. Industrial Project Management and Scheduling.
Introduces students to industrial management system concepts and
applications as they relate to management operations; system design,
implementation and management; case studies of practices; and
application of theory to practical problems.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5387. Advanced Facilities Planning.
An in-depth study of technical problems encountered in designing,
equipping, arranging, and specifying facility requirements for industrial
and technical training facilities.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5389. Research in Technology.
Examination of scientific methods including theory formulation,
deductive reasoning, hypothesis generation, observation, inductive
reasoning, and theory revision. Categories of research are compared
and contrasted as regards methodology. In-depth study of experimental
research as it relates to significant industrial problems including
considerations of design, internal and external validity, and appropriate
analytical technique. Introduction to data analysis and its proper
interpretation.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5390. Advanced Manufacturing Systems.
This course introduces students to various advanced tools, technologies,
and strategies in modern manufacturing. An emphasis is placed
on the state-of-the-art in factory automation and global and smart
manufacturing enterprises. Topics include process automation and
control, advanced manufacturing processes, intelligent manufacturing
control, and information and communication technology (ICT) in
manufacturing. Prerequisites: TECH 5307 with a grade "C" or better or
instructor approval.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5391. Industrial Ecology and Sustainability Engineering.
This course covers the basic principles of life cycle analysis (LCA) of
engineered products and processes. Topics covered include: industrial
ecology, resource depletion, product design, process design, material
selection, energy efficiency, product delivery, use, and end of life
considerations.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5394. Problems in Technology.
Graduate students investigate a special topic by developing a technical
problem, researching the topic, and presenting the findings. Plans will be
developed on an individual basis with strict faculty supervision. May be
repeated for additional credit with permission of the department chair.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5395. Readings in Technology.
A study of the ethical and moral viewpoints typically associated with
American society as related to the development and introduction of new
technology and engineering. Past, present, and future issues will be
studied with selected readings focusing on industrial related problems
and issues.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5396. Thesis.
This course represents a student's continuing thesis enrollments. The
student continues to enroll in this course until the thesis is submitted for
1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5397. Thesis.
This course represents a student's continuing thesis enrollments. The
student continues to enroll in this course until the thesis is submitted for
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5398. Thesis.
This course represents a student's continuing thesis enrollments. The
student continues to enroll in this course until the thesis is submitted for
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit
An introduction to integrated circuit fabrication to include crystal growth, wafer preparation, epitaxial growth, oxidation, diffusion, ion implantation, thin film deposition, lithography, etching, device and circuit formation, packaging and testing. Significant project includes circuit design/simulation and/or process design. Laboratory component involves actual production/testing of a functional semiconductor device.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5394. Design of Industrial Experiments.
This course deals with the study of the fundamentals and applications of industrial experiments. Prerequisite: TECH 5390 with a grade of "C" or better.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

TECH 5398. Directed Project.
This course is a formal investigation into a business or industry problem. The directed project is an applied research project that is more extensive than an independent study and less extensive than a thesis. The course culminates in a detailed project report and oral presentation. Prerequisite: TECH 5394 with a grade of "C" or better and instructor approval.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit

TECH 5399A. Thesis.
This course represents a student’s initial thesis enrollment. No thesis credit is awarded until student has completed the thesis in Technology 5399B.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5399B. Thesis.
This course represents a student’s continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5599B. Thesis.
This course represents a student’s continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.

5 Credit Hours. 5 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit

TECH 5999B. Thesis.
This course represents a student’s continuing thesis enrollments. The student continues to enroll in this course until the thesis is submitted for binding.

9 Credit Hours. 9 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Credit/No Credit