The Bachelor of Science Major in Concrete Industry Management (CIM)

The Bachelor of Science major in Concrete Industry Management (CIM) prepares students who are grounded in basic construction management, who are knowledgeable in concrete technology and techniques and who are able to manage people and systems to promote products and devices related to the concrete industry. CIM professionals find a wide array of opportunities in the concrete industry including positions in sales, operations, technical services and construction management. This degree program is accredited by the National Steering Committee of CIM.

The Bachelor of Science Major in Construction Science and Management (CSM)

The Bachelor of Science major in Construction Science and Management (CSM) prepares students to enter professional careers in the construction industry. Graduates may become construction project managers, estimators, schedulers, field engineers, general and/or subcontractors, code inspectors, material suppliers and technical sales representatives. Students learn the technical aspects of how construction projects are built through classes in residential, commercial, engineering and industrial construction, and learn how to manage construction through the required business administration minor and courses in estimating, scheduling and project management. Career opportunities are many in this industry, which comprises 16% of the Gross National Product. Students entering this degree need to successfully complete the Pre-Construction Curriculum before they will be allowed to register for advanced Construction Science and Management courses. Also, a sophomore level internship is required, where students spend 10 weeks and 400 hours working in the construction industry. Students interested in pursuing the Construction Science and Management degree program can receive more information on the major contacting a CSM Faculty Advisor. This degree program is accredited by the American Council for Construction Education.

The Bachelor of Science in Technology Management

The Bachelor of Science major in Technology Management prepares students for professional management positions in industry, or to become public school teachers in the field of Technology Education. Industry bound graduates will be prepared for work involving materials, processes, product design and development, quality management, safety management, supply chain issues, facility planning, and similar concepts in industrial management. Graduates of the Technology Education track will be prepared to teach a variety of industry and technology related subjects in Texas public schools. This degree has three specializations, Manufacturing Technology, Electronics Technology, and Technology Education. Students interested in pursuing the Bachelor of Science in Technology Management should see a faculty advisor in the Department of Engineering Technology for more details.

Teacher Certification

A student seeking certification to teach at the secondary level must take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI 3325</td>
<td>Adolescent Growth and Development</td>
<td>3</td>
</tr>
<tr>
<td>CI 4332</td>
<td>Secondary Teaching: Curriculum and Technology</td>
<td>3</td>
</tr>
<tr>
<td>CI 4343</td>
<td>Instructional Strategies for the Secondary Teacher</td>
<td>3</td>
</tr>
<tr>
<td>CI 4370</td>
<td>Classroom Management, Ethics, and Legal Issues in Secondary Teaching</td>
<td>3</td>
</tr>
<tr>
<td>RDG 3323</td>
<td>Teaching Reading in the Content Areas</td>
<td>3</td>
</tr>
<tr>
<td>EDST 4681</td>
<td>Student Teaching 8-12</td>
<td>6</td>
</tr>
</tbody>
</table>

The student who has further questions should see the undergraduate advisor in Engineering Technology.

Bachelor of Science (B.S.)

- Major in Concrete Industry Management (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/concrete-industry-management-minor-business-administration-bs)
• Major in Technology Management (Electronics Technology Concentration) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/technology-management-concentration-electronics-bs)
• Major in Technology Management (Manufacturing Technology Concentration) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/technology-management-concentration-manufacturing-bs)
• Major in Technology Management (Teacher Certification in Technology Education, Grades 6-12) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/technology-management-teacher-certification-education-grades-6-12-bs)

Bachelor of Science in Technology (B.S.T.)

• Major in Engineering Technology (Construction Engineering Technology Specialization) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/engineering-technology-construction-specialization-bst)
• Major in Engineering Technology (Electrical Engineering Technology Specialization) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/electrical-specialization-bst)
• Major in Engineering Technology (Environmental Engineering Technology Specialization) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/environmental-specialization-bst)
• Major in Engineering Technology (Manufacturing Engineering Technology Specialization) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/manufacturing-specialization-bst)
• Major in Engineering Technology (Mechanical Engineering Technology Specialization) (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/mechanical-specialization-bst)

Minor

• Technology (http://mycatalog.txstate.edu/undergraduate/science-engineering/technology/technology-minor)

Certificate


Information about graduate programs can be found in the Graduate Catalog (http://mycatalog.txstate.edu/graduate).

Subjects in this department include: CIM (p. 2), CSM (p. 3), TECH (p. 5).

Courses in Concrete Industry Management (CIM)

CIM 3330. Concrete Construction Methods.
This course covers forming, shoring, placing and reinforcing operations. Transporting, placing, consolidating, finishing, jointing and curing concrete for cast-in-place foundations, pavements, slabs on ground, structural frames, and other structural members are studied. Other topics include waterproofing concrete foundations and erecting precast concrete members. Prerequisite: CIM 3420.
Grade Mode: Standard Letter
about Concrete Construction Methods
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

CIM 3340. Understanding the Concrete Construction System.
A detailed look at how the concrete construction industry works. The course includes a review of model building codes, building officials and their function, concrete industry codes and standards, concrete construction processes, quality assurance systems, contract documents, estimating, construction scheduling and concrete construction markets. Prerequisite: MATH 2328 and CIM 3420.
about Understanding the Concrete Construction System
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

CIM 3366. Applications of Concrete in Construction.
This course is a detailed study of the many uses of concrete in the construction of buildings, pavements and other facilities. Emphasis will be placed on the advantages, disadvantages, and unique problems faced by materials suppliers, contractors and design professionals when concrete is chosen for specific applications. Prerequisite: CIM 3330.
about Applications of Concrete in Construction
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

This course examines effects of concrete-making materials (aggregates, cements, admixtures, etc.) on the properties of fresh and hardened concrete. Concrete mixture proportioning calculations and statistical analysis of strength tests are also studied. Prerequisite: CIM 3330.
about Fundamentals of Concrete: Properties and Testing
Grade Mode: Standard Letter
4 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required

CIM 3340. Understanding the Concrete Construction System.
A detailed look at how the concrete construction industry works. The course includes a review of model building codes, building officials and their function, concrete industry codes and standards, concrete construction processes, quality assurance systems, contract documents, estimating, construction scheduling and concrete construction markets. Prerequisite: MATH 2328 and CIM 3420.
about Understanding the Concrete Construction System
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

CIM 3366. Applications of Concrete in Construction.
This course is a detailed study of the many uses of concrete in the construction of buildings, pavements and other facilities. Emphasis will be placed on the advantages, disadvantages, and unique problems faced by materials suppliers, contractors and design professionals when concrete is chosen for specific applications. Prerequisite: CIM 3330.
about Applications of Concrete in Construction
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

This course examines effects of concrete-making materials (aggregates, cements, admixtures, etc.) on the properties of fresh and hardened concrete. Concrete mixture proportioning calculations and statistical analysis of strength tests are also studied. Prerequisite: CIM 3330.
about Fundamentals of Concrete: Properties and Testing
Grade Mode: Standard Letter
4 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required

CIM 3340. Understanding the Concrete Construction System.
A detailed look at how the concrete construction industry works. The course includes a review of model building codes, building officials and their function, concrete industry codes and standards, concrete construction processes, quality assurance systems, contract documents, estimating, construction scheduling and concrete construction markets. Prerequisite: MATH 2328 and CIM 3420.
about Understanding the Concrete Construction System
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

CIM 3366. Applications of Concrete in Construction.
This course is a detailed study of the many uses of concrete in the construction of buildings, pavements and other facilities. Emphasis will be placed on the advantages, disadvantages, and unique problems faced by materials suppliers, contractors and design professionals when concrete is chosen for specific applications. Prerequisite: CIM 3330.
about Applications of Concrete in Construction
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

This course examines effects of concrete-making materials (aggregates, cements, admixtures, etc.) on the properties of fresh and hardened concrete. Concrete mixture proportioning calculations and statistical analysis of strength tests are also studied. Prerequisite: CIM 3330.
about Fundamentals of Concrete: Properties and Testing
Grade Mode: Standard Letter
4 Credit Hours. 3 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required

CIM 3340. Understanding the Concrete Construction System.
A detailed look at how the concrete construction industry works. The course includes a review of model building codes, building officials and their function, concrete industry codes and standards, concrete construction processes, quality assurance systems, contract documents, estimating, construction scheduling and concrete construction markets. Prerequisite: MATH 2328 and CIM 3420.
about Understanding the Concrete Construction System
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

CIM 3366. Applications of Concrete in Construction.
This course is a detailed study of the many uses of concrete in the construction of buildings, pavements and other facilities. Emphasis will be placed on the advantages, disadvantages, and unique problems faced by materials suppliers, contractors and design professionals when concrete is chosen for specific applications. Prerequisite: CIM 3330.
about Applications of Concrete in Construction
Grade Mode: Standard Letter
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
CIM 4320. Issues in Concrete and Construction Industry. This course involves a case study approach to critically analyze various historical and current events in the concrete and construction industry. Particular emphasis will be placed upon developing a managerial decision-making process incorporating ethical, legal, financial and other business perspectives. Prerequisites: CIM 3340, MGT 3303, FIN 3325, and BLAW 2361.

about Construction Materials and Processes
3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Grade Mode: Standard Letter

CIM 4330. Management of Concrete Products – Ordering and Scheduling. This course is designed to provide the student with a basic understanding of managing the ordering and delivery process common to all concrete products. Emphasis will be in planning, organizing and controlling at both the first-line supervisory and managerial levels. Prerequisites: CIM 3340 and MGT 3303.

about Management of Concrete Products – Ordering and Scheduling
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CIM 4340. Concrete Problems: Diagnosis, Prevention and Dispute Resolution. Course involves diagnosing/preventing problems related to concrete production, testing, construction and performance. Students learn to identify causes of fresh and hardened concrete problems, i.e. fast and slow setting, air content variations, low strength, cracking and scaling. Pre-job conferences and dispute resolution methods are examined. Prerequisite: CIM 3366.

about Concrete Problems: Diagnosis, Prevention and Dispute Resolution
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CIM 4398. Capstone. An intensive study of a problem(s) appropriate to the major/student’s career interests. Requires knowledge from previous technical/business coursework. Solution(s) for the problem(s) will be presented to an industry committee. Presentation must emphasize depth of analysis, completeness/effectiveness of solution, and presentation skills. Prerequisite: CIM 4330. (WI).

about Capstone
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing|Writing Intensive
Grade Mode: Standard Letter

Courses in Construction Science and Management (CSM)

CSM 1260. Introduction to the Construction and Concrete Industry. This is an introductory course for Construction and Concrete Industry Management (CIM) majors. Residential, commercial, heavy, civil and highway construction is explored including the concrete industry. The role of the contractor, architect/engineer and owner are covered including contracts, careers, sustainability and economic importance of the construction industry.

about Introduction to the Construction and Concrete Industry
2 Credit Hours. 2 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter

CSM 2160. Introduction to Construction Surveying and Site Layout. Common construction surveying and site layout techniques are studied using both optical levels and total stations. Benchmarks, building lines, property lines, differential and profiling are discussed in lecture with applied exercises performed in the laboratory. Prerequisite: Pre-Construction or Instructor’s Approval.

about Introduction to Construction Surveying and Site Layout
1 Credit Hour. 1 Lecture Contact Hour. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

CSM 2313. Architecture Design I - Construction Documents. Students are introduced to the language and process of producing architectural construction documents in residential projects utilizing computers and CAD software. Site plans, floor plans, sections, elevations, and details are drawn individually and as a team as orthographic projection theory and its importance in resolving complex building geometry are covered.

about Architecture Design I - Construction Documents
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

CSM 2342. Construction Materials and Processes. This course will introduce students to various types of construction materials including ceramics, ferrous, non-ferrous, and organic materials used in construction. Their properties, working characteristics and processes used to manufacture and assemble these materials are studied. Laboratory activities are used to reinforce lecture material. Prerequisites: PHYS 1315/PHYS 1115 or PHYS 1410 or PHYS 1430 with grades of "C" or higher.

about Construction Materials and Processes
3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

Texas State University
A residential construction course, which deals with interpreting plans and specifications, along with studying site work, foundations, walls, roofing, ceilings, floor and finishing systems. Also, residential MEP systems are covered along with applicable building codes and construction financing. Prerequisite: TECH 2342 or Instructor’s Approval.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Residential Construction Systems

This is a commercial building construction systems class that deals with soils, site work, heavy foundations, steel, reinforced concrete and pre-cast structures along with common assemblies. Commercial MEP’s are studied along with CSI master format, as-built and shop drawings, schedule of values, AIA documents and appropriate building codes. Prerequisite: Pre-Construction or Instructor’s Approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
about Structural Analysis

CSM 3362. Structural Analysis.
This is a structural engineering fundamentals class to include design loads, reactions, force systems, functions of a structure, and both the analysis and design of determinate structures by classical and modern techniques. Prerequisites: Completion of Pre-Construction coursework and TECH 2351 with a grade of “C” or higher, or Instructor’s Approval.
3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Grade Mode: Standard Letter
about Structural Analysis

CSM 3363. Heavy, Civil and Highway Construction Systems.
Selection, acquisition and capabilities of heavy construction equipment are presented. Applications of economics to performance characteristics and production of equipment is discussed. Sector-specific construction management methods are covered, including unit price estimating, equipment fleet design, repetitive scheduling and major components of highways, bridges and engineered facilities. Prerequisite: Pre-Construction or Instructor’s Approval.
3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Heavy, Civil and Highway Construction Systems

CSM 3364. Soils and Foundations.
Properties of subsurface materials and the principles of subsurface construction are studied. Topics include soil classification and testing, soil mechanics and foundation systems, including site layout, excavation, caissons, piles, slurry wall, slab and spread footings. Prerequisite: Pre-Construction and TECH 2351 with a grade of “C” or higher, or Instructor’s Approval.
3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
about Soils and Foundations

CSM 3367. Mechanical, Electrical and Plumbing Systems.
This course covers typical Mechanical, Electrical and Plumbing (MEPs) systems found in residential and commercial construction along with design and installation methods used to conserve both energy and water in new and remodeled structures. Prerequisites: Pre-Construction coursework or Instructor’s Approval.
3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Mechanical, Electrical and Plumbing Systems

Students create individual and group commercial projects which include plans, elevations, sections, details, and 3D drawings utilizing 3D building information modeling (BIM) and other current technologies used in the industry. Structural, mechanical, electrical, plumbing, accessibility, and sustainable building issues are discussed. Prerequisite: CSM 2313.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Architectural Design II - Technology in Construction

CSM 4360. Senior Construction Management Capstone.
Students work in groups to prepare a bid proposal based on a real life construction project involving contract negotiations, construction documents interpretation, estimating, bidding, scheduling and developing safety and quality control plans. Emphasis is on developing leadership, team building, and written and oral communication skills. For senior construction majors. Prerequisites: Pre-Construction coursework or MATH 2471 and TECH 4313, TECH 4361, TECH 4364, TECH 4369 or Instructor’s Approval. Recommended TECH 4390.
3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Senior Construction Management Capstone

The fundamentals of construction estimating are covered including feasibility, conceptual, square feet, cubic feet, unit in place, preliminary, engineering, range and contractor’s detail bid estimates. Plans and specifications are used along with contemporary estimating software to develop estimates commonly used in the construction industry. Prerequisite: Pre-Construction and CSM 3361 or Instructor’s Approval.
3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Construction Estimating
CSM 4364. Construction Project Management and Scheduling.
Concepts of construction management are studied beginning with contract documents through the effective management of manpower, machines, material and money necessary to complete construction projects on time and within budget. Gantt Charts and PERT/CPM schedules are developed, using contemporary software. Prerequisites: Pre-Construction coursework and CSM 4361 (concurrent enrollment allowed) or Instructor’s Approval.

3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Construction Project Management and Scheduling

This course covers environmentally sustainable practices used in building design and construction. The LEED system will be used to guide the course, which covers aspects of sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality and the CAD design process. Prerequisite: Pre-Construction or ID 2329 and CSM 2313 or Instructor’s Approval.

3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Environmentally Conscious Design and Construction

CSM 4369. Construction Contracts, Liability and Ethics.
Legal aspects of design and construction contract documents are presented, including contract formation, interpretation, rights and duties and changes. Legal liabilities are explored in the context of professional ethics for design firms and constructors. Prerequisite: Pre-Construction Coursework or CIM 3340 or Instructor’s Approval. (WI).

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Writing Intensive
Grade Mode: Standard Letter
about Construction Contracts, Liability and Ethics

This course provides an introduction to the fundamentals of technical drawing and the related graphical tools used to communicate engineering design concepts. The topics include two dimensional graphics, orthographic projections, geometric dimensioning and tolerancing, computer-aided graphics, parametric solid modeling, and introduction to three dimensional graphics.

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Grade Mode: Standard Letter
about Engineering Design Graphics

TECH 1330. Assembly Processes.
Basic assembly process to include gas, arc, resistance, thermite, induction, and forge welding; weld-ability, weld metallurgy, weld symbology, and weld testing; brazing; soldering; mechanical fastening to include threaded fasteners, rivets, shrink and press fits, seams, staples, crimping, and structural adhesives. Principles of joint design and cost estimation. An overview of electronics assembly processes and automated assembly.

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Assembly Processes

TECH 1336. Manufacturing Processes I.
The course will provide an overview of the manufacturing processes. Major emphasis is placed on machining theory, setup and tooling. Metal forming and fabrication procedures are introduced. Joining and assembly includes welding, mechanical fastening, adhesive bonding and surface finishing concepts. Laboratory demonstrations and tutorials involve machining, joining and forming techniques.

3 Credit Hours. 2 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Manufacturing Processes I

TECH 1339. Manufacturing Processes II.
The course involves the fundamentals of casting and molding processes. Emphasis is placed on casting terminology, molding sand, molding processes, pattern making, coremaking and quality control. Ferrous and non-ferrous alloy composition and casting geometry are explored. Plastic and composite forming concepts are included. Microelectronic manufacturing principles and processes are introduced. Prerequisite: TECH 1336.

3 Credit Hours. 2 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Manufacturing Processes II

TECH 2190. Industrial Internship.
This course is a supervised experiential learning course in various technical disciplines as appropriate to a student’s degree program. This work integrated learning course helps the student link theory with practice. Repeatable for credit. Prerequisites: 45 hours completed with at least 12 having been completed at Texas State and a minimum major GPA of 2.25.

1 Credit Hour. 0 Lecture Contact Hours. 4 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Credit/No Credit
about Industrial Internship
TECH 2310. Introduction to Computer-Aided Design (CAD).
Principles of 3D modeling are introduced in the preparation of drawings for manufacturing processes. Emphasis includes the parametric solid modeling of machine elements and geometric dimensioning and tolerancing. The laboratory component involves production of engineering drawings and simulations connecting this course to computer-aided engineering. Prerequisite: ENGR 1313 or instructor's approval.
about Introduction to Computer-Aided Design (CAD)
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

Fundamentals of Material Removal. (3-0) An overview of the micro and macro structure of materials is studied. Assessment of materials with regard to their chemical and mechanical properties and how these properties relate to machining is explored. Machining conditions with regard to feed, speed, surface finish, tooling requirements, horsepower capabilities, time, and cost analysis complete the class. Prerequisite: MATH 1315.
about Fundamentals of Material Removal
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

TECH 2344. Power Technology.
This class deals with understanding the basic laws of thermo-dynamics. It probes efficiency and examines energy-converting devices from the inputs, processes, outputs model. Internal combustion engines, electric motors, hydraulic, pneumatic, and gearing systems, and fuel analysis are reviewed from a practical and theoretical perspective.
about Power Technology
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.

Course covers principles of statics and strength of materials to include forces, equilibrium, friction, centroids, and stress/strain relationships, axial stress and deformation, thermal stress and deformation, stress concentrations, factor of safety, torsional stress, beam stresses and combined stress. Prerequisites: CSM 2342 or ENGR 2300, PHYS 1315 and PHYS 1115 or PHYS 1410 or PHYS 1430, all courses with a grade of C or higher.
about Statics and Strength of Materials
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

TECH 2370. Electricity/Electronics Fundamentals.
Fundamentals of safety, Ohm's Law, series, parallel, and seriesparallel circuits, meters, relays, and basic transistor circuits. 3310 Industrial Design. (3-0) The fundamentals, elements, and principles of design applied in creative ways to industrial design problems emphasizing function, form, and aesthetics. Ergonomics, product life cycles, environmental concerns, and use of elementary statics for stress analysis. (WI).
about Electricity/Electronics Fundamentals
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
TCCN: ENGR 2305

about Electricity/Electronics Fundamentals

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.

TECH 3322. Development of Technology.
The role of technology in the development of Western World culture is studied from a technical perspective. Social repercussions resulting from the introduction of foundational technical developments are reviewed. Examples of technical areas examined are agriculture, transportation, manufacturing, engineering, defense, and communications. Readings focus discussions and papers on specific topics and encourage synthesis level understanding. (WI).
about Development of Technology
Course Attribute(s): Multicultural Content|Writing Intensive
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

TECH 3344. Applied Thermofluids.
Basic concepts, first and second laws of thermodynamics, thermodynamic properties, heat transfer by conduction, convection and radiation, fluid statics and fluid dynamics are studied. Prerequisites: TECH 2344 and PHYS 1430.
about Applied Thermofluids
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

The course provides an in-depth understanding of the lean principles as they apply to manufacturing and service organizations with emphasis on lean tools and concepts such as Value Stream Mapping, 5S, kaizen, waste, takt/cycle time, visual control, six-sigma, mistake proofing, single piece flow, cell design and pull systems. Prerequisite: TECH 3364.
about Principles of Lean Systems
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.

TECH 3357. Facilities Planning and Design.
This project-based course provides students with a practical knowledge of designing efficient facility layout and material handling system. Systematic layout planning (SLP) based on a product and process information is studied in depth. Simulation tools are used for flow analysis. Prerequisites: TECH 2310.
about Facilities Planning and Design
Course Attribute(s): Lab Required
Grade Mode: Standard Letter

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
TECH 3364. Quality Assurance.
This course covers the principles of quality management to include basic probability and statistics concepts, control charts for attributes and variables, sampling plans, quality audits and costs. The laboratory component of this class includes exercises that provide exposure to basic metrology and data collection.

About Quality Assurance

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
About Quality Assurance

TECH 3370. Electronics.
This course is a study of the characteristics of basic electronic circuits and their component parts. Course content includes the use of electronic test equipment, inductance, capacitance, reactance, impedance, rectification, switching, amplification, and electronic circuit fabrication. Prerequisite: TECH 2370 or EE 2400.

About Electronics

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
About Electronics

This course deals with basic principles of communication systems. Specific topics include analysis of signals and systems, modulation techniques (digital and analog), analysis of transmitters and receivers, networking, and wireless communication systems. Prerequisites: TECH 2370 or EE 2400.

About Communication Systems

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
About Communication Systems

TECH 4197. Special Problems.
The investigation of a special topic by developing the problem, researching the topic, and presenting the findings as they apply to industry/technology. This course will be applicable to all areas of technology, and must be done only with the approval of the cooperating faculty member and Department Chair. Repeatable for credit with different emphasis.

About Special Problems

1 Credit Hour. 1 Lecture Contact Hour. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Standard Letter
About Special Problems

TECH 4330. Foundry & Heat Treatment.
The technical aspects of foundry and heat treatment of ferrous and non-ferrous metals are reviewed. Students gain proficiency with interpretation of binary phase diagrams, mathematical modeling of gate and runner systems, micro-structural analysis, process cost evaluation, sand testing, investment casting and other technical processes. Technical report writing is an important part of this class. Data collection and data analysis with experiments allow students to develop appropriate techniques for presenting technical data in report format. Prerequisites: TECH 2310, ENGR 2300 and TECH 2351 or MFGE 2332 or Instructor’s Approval. (WI).

About Foundry & Heat Treatment

3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Lab Required|Writing Intensive
Grade Mode: Standard Letter
About Foundry & Heat Treatment

TECH 4345. Method Engineering and Ergonomics.
The course provides an in-depth understanding of the lean principles as they apply to manufacturing and service organizations with emphasis on lean tools and concepts such as Value Stream Mapping, 5S, kaizen, waste, takt/cycle time, visual control, six-sigma, mistake proofing, single piece flow, cell design and pull systems. Prerequisite: TECH 3364.

About Method Engineering and Ergonomics

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
About Method Engineering and Ergonomics

This course will provide students with fundamentals of manufacturing processes planning and engineering. Major emphasis will be placed on make-buy analysis, tolerance analysis and dimensional control, tool and fixture design, process and material selection, design for manufacturing, design for assembly, and process planning. Prerequisites: TECH 1393 and TECH 2310.

About Manufacturing Process Engineering

3 Credit Hours. 1 Lecture Contact Hour. 3 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
About Manufacturing Process Engineering

Principles of the design of mechanical components; theories of failure; material selection; design of shafts, gears, cams, fasteners, springs and brakes; dynamics; balancing of machinery and vibration control are studied. Prerequisites: TECH 2310 and TECH 2351.

About Machine Elements: Dynamics and Design

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
About Machine Elements: Dynamics and Design

TECH 4367. Polymer Properties and Processing.
Structure, physical & mechanical properties, design considerations and processing methods for polymer-based materials are presented. Processing methods include: injection molding, blow molding, thermoforming, compression molding, extrusion, filament winding, lay-up methods, vacuum bag molding and poltrusion. Prerequisite: ENGR 2300.

About Polymer Properties and Processing

3 Credit Hours. 3 Lecture Contact Hours. 1 Lab Contact Hour.
Grade Mode: Standard Letter
About Polymer Properties and Processing
TECH 4372. Electronic Devices and Circuits.
This course covers transistor configurations, field effect transistors and circuits, voltage regulation, amplifier feedback principles, operational amplifiers and circuitry, and unijunction transistors and applications. Prerequisites: TECH 2370 or EE 2400.

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Electronic Devices and Circuits

TECH 4373. Control Systems and Instrumentation.
This course is an introduction to modern control systems and instrumentation. Topics covered include transducers, sensors, actuators, instrumentation, open and closed loop control systems, PID controllers, programmable logic controllers and ladder logic, and computer interface software and hardware. Prerequisites: TECH 2370 or EE 2400.

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Control Systems and Instrumentation

TECH 4374. Digital Systems.
Solid state digital electronics from basic concepts to current industrial needs in terms of logic gates (all types), number systems counters (all types), registers (all types), sequential control circuits, and shift register generator. Prerequisite: TECH 2370 or PHYS 2425.

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Digital Systems

TECH 4380. Industrial Safety.
Introduction to the field of industrial safety with emphasis on compliance with Federal and State regulations. Prerequisite: Junior standing. (WI). about Industrial Safety

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Writing Intensive
Grade Mode: Standard Letter
about Industrial Safety

TECH 4383. Driver and Traffic Safety Education I.
Content, methods, and materials for instruction in the classroom phase of driver education in Texas. Topics include Texas traffic law; Texas Education Agency standards for high school driver education; driver behavior, attitude, and psychomotor skills; and safety in the highway transportation system. about Driver and Traffic Safety Education I

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process
Grade Mode: Standard Letter
about Driver and Traffic Safety Education I

TECH 4385. Driver and Traffic Safety Education II.
Content, methods and materials for instruction in the laboratory phase of driver education in Texas. Topics include in-car instruction, multi-car range, and simulation. During laboratory sessions participants will observe in-car instructors, peer teach in the car, and teach a high school student how to drive. TECH 4383 and 4385 will be taken simultaneously. Prerequisites: TECH 4383 and a good driving record.

3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Lab Required
Grade Mode: Standard Letter
about Driver and Traffic Safety Education II

TECH 4387. Motorcycle Safety and Rider Education.
Techniques and methods of teaching beginner rider education. Includes classroom techniques as well as laboratory experience in on-street and off-street riding. Not applicable to the BS in Technology program. about Motorcycle Safety and Rider Education

3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Lab Required
Grade Mode: Standard Letter
about Motorcycle Safety and Rider Education

TECH 4389A. Advanced Residential Construction.
Advanced concepts in residential construction are covered including land acquisition, land development, infrastructure, deed restrictions, cash flow, financial forecasting, marketing, scheduling and sustainable building practices. Prerequisite: CSM 2360 with a grade of "C" or higher.

about Advanced Residential Construction

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Topics
Grade Mode: Standard Letter
about Advanced Residential Construction

TECH 4389B. Construction Industry Best Practices.
This course will cover current issues facing the construction industry today including the best practices used to resolve these issues. Several industry leaders will lecture on these contemporary problems facing the industry. Restricted to Junior level Construction Science and Management Majors.

about Construction Industry Best Practices

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Topics
Grade Mode: Standard Letter
about Construction Industry Best Practices

TECH 4390. Internship.
Supervised on-the-job professional learning experience in construction, manufacturing, electronics, and other technical areas. This course provides practical work experience in their particular field of interest. Repeatable for credit. Prerequisites: Consult internship coordinator. (WI). about Internship

3 Credit Hours. 0 Lecture Contact Hours. 40 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Process|Dual Enrollment
Grade Mode: Standard Letter
about Internship

About Internship
TECH 4392. Micro and Nano Manufacturing.
This course covers the basic principles of micro and nano manufacturing. Emphasis is placed on the process descriptions, terminology, equipment requirements, and processes for micro and nano systems. Basic physics and process chemistry is combined with control schemes to arrive at overall systems descriptions. Prerequisites: CHEM 1335 or CHEM 1341, and PHYS 1325 or PHYS 1420 or PHYS 2425.

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
about Micro and Nano Manufacturing

TECH 4393. Driver and Traffic Safety Education III.
Content, procedures, and administration of multi-phase driver education programs. Topics include scheduling, maintenance and operation of laboratory equipment, record keeping, lesson plan development, and driver education for the handicapped. Practicum in classroom and/or simulation instruction. Not applicable to the Bachelor of Science in Technology degree program. Prerequisite: TECH 4383, TECH 4385, and TECH 4393 may be taken simultaneously.
about Driver and Traffic Safety Education III

3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Standard Letter
about Driver and Traffic Safety Education III

TECH 4394. Microelectronics Manufacturing II.
This is an intermediate level course in integrated circuit processing. Topics covered include: atomic models for diffusion, oxidation and ion implantation; topics related to thin film processes such as chemical vapor deposition, physical vapor deposition; planarization by chemical-mechanical polishing and rapid thermal processing; and process integration for bipolar and MOS device fabrication. Students will design processes and model them using a simulation tool such as SUPREM.
about Microelectronics Manufacturing II

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Grade Mode: Standard Letter
about Microelectronics Manufacturing II

TECH 4395. Automated Manufacturing Systems I.
This course primarily deals with automation in industrial systems. In particular, this course focuses on automation and control technologies in manufacturing systems at machine and device levels. Included in its structure are areas such as fundamentals of industrial automation, sensors and actuators, numerical control, robotics, and PLC. Prerequisites: TECH 1393 and TECH 2310 or TECH 4373.
about Automated Manufacturing Systems I

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Automated Manufacturing Systems I

TECH 4396. Automated Manufacturing Systems II.
This course primarily deals with automation in industrial systems. In particular, this course focuses on automation and control technologies at a system level. This course includes topics such as simulation of manufacturing systems, flexible manufacturing systems, automated quality control, automated identification, and automated material handling. Prerequisites: TECH 4395.

3 Credit Hours. 3 Lecture Contact Hours. 3 Lab Contact Hours.
Course Attribute(s): Lab Required
Grade Mode: Standard Letter
about Automated Manufacturing Systems II

TECH 4397. Special Problems.
The investigation of a special topic by developing the problem, researching the topic, and presenting the findings as they apply to industry/technology. This course will be applicable to all areas of technology, and must be done only with the approval of the cooperating faculty member and Department Chair. Repeatable for credit with different emphasis.
about Special Problems

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Standard Letter
about Special Problems

TECH 4398. Senior Design.
This course deals with application of technical and non-technical skills and knowledge using a multidisciplinary team-based approach for solving real-world problems related to product and process development. The topics include systematic product development, development of business plans, project management, cost estimation, documentation and presentation, prototyping, fabrication and concurrent engineering. Prerequisites: TECH 4395 or TECH 4372 or EE 3400 or GEO 4313. (WI).
about Senior Design

3 Credit Hours. 2 Lecture Contact Hours. 2 Lab Contact Hours.
Course Attribute(s): Lab Required|Writing Intensive
Grade Mode: Standard Letter
about Senior Design

TECH 4399. Seminar in Technology.
The topics for this course will vary. The course will involve the identification of the topic, its nomenclature, its processes, tools, equipment or materials, and its application to technology. The topic may apply to either the certification program or technology program or to both. A final report summary or presentation will conclude each seminar. Repeatable for credit with different emphasis.
about Seminar in Technology

3 Credit Hours. 3 Lecture Contact Hours. 0 Lab Contact Hours.
Course Attribute(s): Exclude from 3-peat Processing
Grade Mode: Standard Letter
about Seminar in Technology

Ameri, Farhad, Associate Professor, Engineering Technology, D.Eng., University of Michigan-Ann Arbor

Bartlett, Laura Nicole, Assistant Professor, Engineering Technology, Ph.D., Missouri Univ of Science and Tech

Batey, Andy H, Chair - Associate Professor, Engineering Technology, Ph.D., Univ of Maryland College Park
Galassini, Joel Lyn, Lecturer, Engineering Technology, M.B.A., Univ of Texas at San Antonio

Habingreither, Robert B, Interim Dean, College of Science and Engineering and Professor, Engineering Technology, Ed.D., West Virginia University

Hager, Cassandrea Jane, Senior Lecturer, Engineering Technology, Ph.D., Texas A&M University

Hanzel, David W, Senior Lecturer, Engineering Technology, M.Ed., Texas State University

Humphries, Steven Cade, Lecturer, Engineering Technology, M.S.S.W., Texas State University

Kent, Bryan, Lecturer, Engineering Technology, M.B.A., St. Edward's University

Kim, Yoo-Jae, Associate Professor, Engineering Technology, D.SC., Washington Univ in St. Louis

Lee, Soon Jae, Associate Professor, Engineering Technology, Ph.D., Clemson University

Newton, Terry John, Lecturer, Engineering Technology, M.A., University of Houston

Pool, William R, Senior Lecturer, Engineering Technology, M.S., Texas State University

Reese, Garth Benjamin, Lecturer, Engineering Technology, M.S., Brigham Young University

Roden, Charles M, Lecturer, Engineering Technology, B.S., University of North Texas

Rowe, Scott L, Senior Lecturer, Engineering Technology, M.Ed., Texas State University

Schemmel, John Joseph, Professor, Engineering Technology, Ph.D., North Carolina State University

Sharma, Vivek, Senior Lecturer, Engineering Technology, M.S., Arizona State University

Song, In-Hyouk, Assistant Professor, Engineering Technology, Ph.D., Louisiana State Univ A&M College

Spencer, Bobbi J, Senior Lecturer, Engineering Technology, M. Arch., Texas A&M University

Sriraman, Vedaraman, University Distinguished Professor, Engineering Technology, D.Eng., Lamar University

Summers, Mark Thomas, Lecturer, Engineering Technology, M.S.S.W., Texas State University

Talley, Kimberly Grau, Assistant Professor, Engineering Technology, Ph.D., University of Texas at Austin

Tarbox, Tamara Nina, Lecturer, Engineering Technology, M.S.S.W., Texas State University

Torres, Anthony S, Assistant Professor, Engineering Technology, Ph.D., Univ of New Mexico Main Campus

Winek, Gary J, Professor, Engineering Technology, Ph.D., Univ of Maryland College Park

Woolsey, Elijah Michael, Lecturer, Engineering Technology, M.S.S.W., Texas State University

You, Byoung Hee, Associate Professor, Engineering Technology, Ph.D., Louisiana State Univ A&M College